POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name		
Image processing and analysis		
Course		
Field of study		Year/Semester
Mathematics in technology	3/6	
Area of study (specialization)		Profile of study
		general academic
Level of study		Course offered in
First-cycle studies Form of study		Polish
		Requirements
full-time		elective
Number of hours		
Lecture	Laboratory classes	Other (e.g. online)
30	15	
Tutorials	Projects/seminars	
Number of credit points		
3		
Lecturers		
Responsible for the course/lecturer: Responsi		sible for the course/lecturer:
Dr inż. Marek Kraft		,
email: marek.kraft@put.poznan.p	bl	
tel. 61 647 2365		
Faculty of Control, Robotics and E Engineering	lectrical	
Piotrowo 3A, 60-965 Poznań		

Prerequisites

1. Has an extended in-depth knowledge on a range of branches of higher mathematics and specific knowledge regarding the application of mathematical tools and techniques in engineering - [K_W01 (P6S_WG)]

2. Has an ordered, theoretically grounded knowledge on computer science, including numerical methods; knows at least one programming package or language [K_W06 (P6S_WG)]

3. Is capable of devising an algorithm to solve a simple engineering task; can implement and test the algorithm in selected development environment [K_U04 (P6S_UW)]

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

4. Is aware of the level of his/her knowledge w.r.t. the state of the art in technical and engineering research [K_K01 (P6S_KK)]

Course objective

The aim of the course is to learn the basics of methods of image acquisition and processing and gain the knowledge on typical applications of image processing systems. After completing the course, the student should be able to select an algorithm or a set of algorithms fort the implementation of a complete intelligent vision system.

Course-related learning outcomes

Knowledge

1. Has an extended in-depth knowledge on a range of branches of higher mathematics and specific knowledge regarding the application of mathematical tools and techniques in engineering - [K_W01 (P6S_WG)]

2. Has an ordered, theoretically grounded knowledge on computer science, including numerical methods; knows at least one programming package or language [K_W06 (P6S_WG)]

3. Has a structured knowledge on signal theory, measurement technology and data acquisition and analysis [K_W07 (P6S_WG)]

4. Knows and understands engineering technologies and is aware of the latest development trends in his/her study field [K_W11 (P6S_WG)]

Skills

1. Is capable of formulating an engineering problem, carry out detailed research using analytical, simulation or experimental methods interpret the results and draw conclusions - [K_U05 (P6S_UW)]

2. Can select appropriate method and measurement equipment to make basic measurements of physical quantities; can use basic data processing and analysis methods - [K_U07 (P6S_UW)]

3. Can use tools and devices according to the general guidelines and specific documentation; is capable of observing workplace safety regulations - [K_U09 (P6S_UW)]

Social competences

1. Is aware of the level of his/her knowledge w.r.t. the state of the art in technical and engineering research [K_K01 (P6S_KK)]

2. Is aware of the necessity of expanding one's knowledge to solve more recent technical problems [K_K02 (P6S_KK)]

3. Understands and appreciates the importance of intellectual honesty and in his/her own and other poeople's actions; is capable to demonstrate reliability, impartiality, professionalism and ethical attitude [K_K04 (P6S_KR)]

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture: A written exam at the end of the semester.

Laboratory: Completing laboratory exercises and practical exam at the end of the semester.

Programme content

Image acquisition, image encoding methods, video encoding. The use of OpenCV library for image processing. Colour spaces and histograms. Early image processing - local methods (Gamma correction, histogram-based processing, etc.) and local contextual methods - convolution, linear and non-linear filtration; morphological operations. Detection of features (line, points). Image feature and region descriptors. Shape analysis. Geometric transformations. Introduction to video sequence analysis. Introduction to machine learning methods in image processing - using scikit-learn and TensorFlow libraries.

Teaching methods

Bibliography

Basic

1. R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010

2. Additional course metaerial published on university MOOC platform

Additional

1. Selection of additional online resources

Breakdown of average student's workload

	Hours	ECTS
Total workload	90	3,0
Classes requiring direct contact with the teacher	55	2,0
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation) ¹	35	1,0

¹ delete or add other activities as appropriate